

 $E^{\circ'} = -0.197 \text{ V}$

 $E^{o'} = -0.320 \text{ V}$

Time: 2 hrs

ILARA MOKIN, ONDO STATE FACULTY OF BASIC AND APPLIED SCIENCES DEPARTMENT OF PHYSICAL AND CHEMICAL SCIENCES

FIRST SEMESTER 2018/2019 B,Sc EXAMINATIONS

BCH 303- Biomembrane and Bioenergetics

Instruction: Attempt any (3) of the five (5) questions

- 1. (a) State the 1st and 2nd Laws of Thermodynamics
 - (b) The portion of a system's energy that can perform work is given by this equation:

$$G = H - TS$$

- Define each function in the equation and (i)
- (ii) State the conditions under which the equation is valid.
- (c) Describe the three major types of cellular work requiring the utilization of ATP
- (d) Calculate the ΔG° of the reaction,

Acetaldehyde + NADH + H^+ \longrightarrow Ethanol + NAD^+

Given the following half reactions:

Acetaldehyde
$$+ 2H^{+} + 2e^{-} \longrightarrow Ethanol$$

 $NAD^{+} + 2H^{+} + 2e^{-} \longrightarrow NADH$

(Faraday's constant, $F_{s} = 96.5 \text{ KJ/V. mol}$)

- 2. (a) i What are coupled reactions?
 - ii Illustrate with two examples
 - iii How important are coupled reactions in cellular metabolism.
 - (b) ATP has a large negative standard free energy change (ΔG°) of hydrolysis:

ATP +
$$H_2O$$
 \longrightarrow ADP + Pi ΔG° = -30.5 kJ/mol

Discuss the chemical basis for the large, negative free energy change?

- (c) State four (4) other energy molecules with high phosphoryl group transfer potential in cellular metabolism apart from ATP.
- 3. Describe the Fluid Mosaic Model of membrane structure (the use of a well-labelled diagram will earn additional marks).
- 4. (a) What is membrane fluidity?
 - (b) Why does membrane need to be fluid?
 - (c) Describe how membrane fluidity is influenced by:
 - (i) Cholesterol
 - (ii) Temperature and
 - (iii) Fatty acids
- 5. Diffusion and Osmosis are two forces influencing the movement of water and solutes across plasma membranes. Discuss